
Fundamental Operations in Artificial Neurons: Dot
Product, Matrix Multiplication, Linear Layers, and

Activation Functions

July 24, 2025

Artificial neurons form the backbone of modern deep learning systems. This chapter
explores the foundational mathematical operations that underpin artificial neurons: the dot
product, matrix multiplication, linear layers, and activation functions. We extend the analy-
sis with illustrative diagrams and a section on the computational flow of neural layers. These
operations, while simple individually, enable the construction of powerful neural architectures
capable of modeling highly complex functions.

1 Introduction

Artificial Neural Networks (ANNs) are inspired by the structure and functioning of the
biological brain. Their core processing unit is the artificial neuron, which computes a
weighted sum of its inputs, adds a bias term, and applies a non-linear transformation to
produce an output.

This chapter presents the key operations that define the behavior of artificial neurons,
leading to the composition of multi-layer neural networks.

2 Dot Product

The dot product of two vectors x,w ∈ Rn is defined as:

w · x =
n∑

i=1

wixi

In neural computation, this operation computes the weighted sum of input features. It serves
as the linear core of the neuron’s function.

3 Matrix Multiplication

In practice, multiple inputs and multiple neurons are processed simultaneously using matrix
multiplication.

1



Let:

• X ∈ Rm×n be a matrix of m input samples (rows) each with n features,

• W ∈ Rn×p be the weight matrix for p neurons.

Then the output of the layer is:
Z = X ·W

Figure 1: Illustration of matrix multiplication in a neural layer. Each output neuron receives
a dot product between weights and input features.

4 Linear Layer (Affine Transformation)

A linear layer computes:
z = W · x+ b

where:

• W: weights,

• x: input vector,

• b: bias vector.

This operation projects the input into a new feature space. The bias allows each output
neuron to have an offset.

© 2025 AI by Hand India



5 Activation Functions

After linear transformation, non-linear activation functions are applied to introduce expres-
siveness and prevent the network from collapsing into a purely linear system.

Common Activation Functions

• Sigmoid:

σ(z) =
1

1 + e−z

• Tanh:

tanh(z) =
ez − e−z

ez + e−z

• ReLU:
ReLU(z) = max(0, z)

Each function affects the optimization landscape and gradient behavior differently.

6 Computational Flow of an Artificial Neuron

Putting it all together, the output of a neuron is:

a = f(w · x+ b)

Or, in matrix form for a batch of inputs:

A = f(X ·W + b)

7 Example Workflow

Assume a single-layer network with 3 inputs and 2 neurons:

x =
[
x1 x2 x3

]
, W =

w11 w12

w21 w22

w31 w32

 , b =
[
b1 b2

]
Then the output is:

z = x ·W + b ⇒ a = f(z)

© 2025 AI by Hand India



Figure 2: A basic artificial neuron takes a vector input, computes a dot product with weights,
adds a bias, and passes the result through an activation function.

8 Conclusion

This paper reviewed the basic mathematical operations behind artificial neurons:

• The dot product for weighted input summation,

• Matrix multiplication for parallel computation,

• Linear layers for affine transformations,

• Activation functions for non-linear modeling.

Together, these components form the backbone of deep learning models, enabling them
to represent and learn complex functions.

References

1. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

2. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

3. Nielsen, M. (2015). Neural Networks and Deep Learning. Determination Press.

© 2025 AI by Hand India

https://www.deeplearningbook.org/
https://www.springer.com/gp/book/9780387310732
http://neuralnetworksanddeeplearning.com/


9 Practice by Hand

This section includes beginner-friendly exercises that reinforce the theoretical concepts pre-
sented earlier. You are encouraged to solve them manually to gain intuitive understanding.

9.1 Dot Product Examples

Example 1: Let a =
[
3
]
,b =

[
5
]
a · b = 3× 5 = 15

Example 2: Let a =
[
1 3

]
,b =

[
4
1

]
a · b = (1× 4) + (3× 1) = 4 + 3 = 7

9.2 Matrix Multiplication Examples

Example 1: Let

A =

[
2 4 −6
3 4 4

]
, B =

[
4
−1

]
Since dimensions are incompatible, this example may be meant for vector-matrix dot

application or has a typo. Let’s move to the next valid example.

Example 2: Let

A =

[
2 −3
1 5

]
, B =

[
−1 2
1 1

]
Then,

A ·B =

[
(2)(−1) + (−3)(1) (2)(2) + (−3)(1)
(1)(−1) + (5)(1) (1)(2) + (5)(1)

]
=

[
−2− 3 4− 3
−1 + 5 2 + 5

]
=

[
−5 1
4 7

]

9.3 Linear Layer Example

Let

X =

[
3
1

]
, W =

[
2 3 4
1 −1 3

]
, b =

[
2 2 2

]
Then the output Y is:

Y = WT ·X+ b ⇒
Y1 = (2)(3) + (1)(1) + 2 = 6 + 1 + 2 = 9

Y2 = (3)(3) + (−1)(1) + 2 = 9− 1 + 2 = 10

Y3 = (4)(3) + (3)(1) + 2 = 12 + 3 + 2 = 17

© 2025 AI by Hand India



9.4 Activation Function: ReLU Practice

Apply ReLU to the following inputs:

ReLU(x) = max(0, x)

Input (x) Output (ReLU(x))
-5 0
-4 0
-3 0
-2 0
-1 0
0 0
1 1
2 2
3 3
4 4
5 5

9.5 Artificial Neuron Example

Given:
X =

[
5 2

]
W =

 2 1
1 −2
−1 0

 , b =
[
1 −1 −1

]
Compute each neuron’s linear and ReLU-activated output:

Y1 = ReLU(2 · 5 + 1 · 2 + 1) = ReLU(10 + 2 + 1) = ReLU(13) = 13

Y2 = ReLU(1 · 5 + (−2) · 2− 1) = ReLU(5− 4− 1) = ReLU(0) = 0

Y3 = ReLU((−1) · 5 + 0 · 2− 1) = ReLU(−5− 1) = ReLU(−6) = 0

⇒ Y =
[
13 0 0

]
These examples help in grasping the fundamentals of neural operations and provide a

basis for building more complex models.

© 2025 AI by Hand India


	Introduction
	Dot Product
	Matrix Multiplication
	Linear Layer (Affine Transformation)
	Activation Functions
	Computational Flow of an Artificial Neuron
	Example Workflow
	Conclusion
	Practice by Hand
	Dot Product Examples
	Matrix Multiplication Examples
	Linear Layer Example
	Activation Function: ReLU Practice
	Artificial Neuron Example


