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Artificial neurons form the backbone of modern deep learning systems. This chapter
explores the foundational mathematical operations that underpin artificial neurons: the dot
product, matrix multiplication, linear layers, and activation functions. We extend the analy-
sis with illustrative diagrams and a section on the computational flow of neural layers. These
operations, while simple individually, enable the construction of powerful neural architectures
capable of modeling highly complex functions.

1 Introduction

Artificial Neural Networks (ANNs) are inspired by the structure and functioning of the
biological brain. Their core processing unit is the artificial neuron, which computes a
weighted sum of its inputs, adds a bias term, and applies a non-linear transformation to
produce an output.

This chapter presents the key operations that define the behavior of artificial neurons,
leading to the composition of multi-layer neural networks.

2 Dot Product

The dot product of two vectors x,w ∈ Rn is defined as:

w · x =
n∑

i=1

wixi

In neural computation, this operation computes the weighted sum of input features. It serves
as the linear core of the neuron’s function.

3 Matrix Multiplication

In practice, multiple inputs and multiple neurons are processed simultaneously using matrix
multiplication.
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Let:

• X ∈ Rm×n be a matrix of m input samples (rows) each with n features,

• W ∈ Rn×p be the weight matrix for p neurons.

Then the output of the layer is:
Z = X ·W

Figure 1: Illustration of matrix multiplication in a neural layer. Each output neuron receives
a dot product between weights and input features.

4 Linear Layer (Affine Transformation)

A linear layer computes:
z = W · x+ b

where:

• W: weights,

• x: input vector,

• b: bias vector.

This operation projects the input into a new feature space. The bias allows each output
neuron to have an offset.
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5 Activation Functions

After linear transformation, non-linear activation functions are applied to introduce expres-
siveness and prevent the network from collapsing into a purely linear system.

Common Activation Functions

• Sigmoid:

σ(z) =
1

1 + e−z

• Tanh:

tanh(z) =
ez − e−z

ez + e−z

• ReLU:
ReLU(z) = max(0, z)

Each function affects the optimization landscape and gradient behavior differently.

6 Computational Flow of an Artificial Neuron

Putting it all together, the output of a neuron is:

a = f(w · x+ b)

Or, in matrix form for a batch of inputs:

A = f(X ·W + b)

7 Example Workflow

Assume a single-layer network with 3 inputs and 2 neurons:

x =
[
x1 x2 x3

]
, W =

w11 w12

w21 w22

w31 w32

 , b =
[
b1 b2

]
Then the output is:

z = x ·W + b ⇒ a = f(z)
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Figure 2: A basic artificial neuron takes a vector input, computes a dot product with weights,
adds a bias, and passes the result through an activation function.

8 Conclusion

This paper reviewed the basic mathematical operations behind artificial neurons:

• The dot product for weighted input summation,

• Matrix multiplication for parallel computation,

• Linear layers for affine transformations,

• Activation functions for non-linear modeling.

Together, these components form the backbone of deep learning models, enabling them
to represent and learn complex functions.
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9 Practice by Hand

This section includes beginner-friendly exercises that reinforce the theoretical concepts pre-
sented earlier. You are encouraged to solve them manually to gain intuitive understanding.

9.1 Dot Product Examples

Example 1: Let a =
[
3
]
,b =

[
5
]
a · b = 3× 5 = 15

Example 2: Let a =
[
1 3

]
,b =

[
4
1

]
a · b = (1× 4) + (3× 1) = 4 + 3 = 7

9.2 Matrix Multiplication Examples

Example 1: Let

A =

[
2 4 −6
3 4 4

]
, B =

[
4
−1

]
Since dimensions are incompatible, this example may be meant for vector-matrix dot

application or has a typo. Let’s move to the next valid example.

Example 2: Let

A =

[
2 −3
1 5

]
, B =

[
−1 2
1 1

]
Then,

A ·B =

[
(2)(−1) + (−3)(1) (2)(2) + (−3)(1)
(1)(−1) + (5)(1) (1)(2) + (5)(1)

]
=

[
−2− 3 4− 3
−1 + 5 2 + 5

]
=

[
−5 1
4 7

]

9.3 Linear Layer Example

Let

X =

[
3
1

]
, W =

[
2 3 4
1 −1 3

]
, b =

[
2 2 2

]
Then the output Y is:

Y = WT ·X+ b ⇒
Y1 = (2)(3) + (1)(1) + 2 = 6 + 1 + 2 = 9

Y2 = (3)(3) + (−1)(1) + 2 = 9− 1 + 2 = 10

Y3 = (4)(3) + (3)(1) + 2 = 12 + 3 + 2 = 17

© 2025 AI by Hand India



9.4 Activation Function: ReLU Practice

Apply ReLU to the following inputs:

ReLU(x) = max(0, x)

Input (x) Output (ReLU(x))
-5 0
-4 0
-3 0
-2 0
-1 0
0 0
1 1
2 2
3 3
4 4
5 5

9.5 Artificial Neuron Example

Given:
X =

[
5 2

]
W =

 2 1
1 −2
−1 0

 , b =
[
1 −1 −1

]
Compute each neuron’s linear and ReLU-activated output:

Y1 = ReLU(2 · 5 + 1 · 2 + 1) = ReLU(10 + 2 + 1) = ReLU(13) = 13

Y2 = ReLU(1 · 5 + (−2) · 2− 1) = ReLU(5− 4− 1) = ReLU(0) = 0

Y3 = ReLU((−1) · 5 + 0 · 2− 1) = ReLU(−5− 1) = ReLU(−6) = 0

⇒ Y =
[
13 0 0

]
These examples help in grasping the fundamentals of neural operations and provide a

basis for building more complex models.
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